Cluster analysis e promo “customizzata”: un modo intelligente di usare le loyalty cards

Con oggi apriamo un altro tema “caldo”, quello delle loyalty cards, e cerchiamo di dare risposta ad un interrogativo che sempre più le aziende si pongono: le carte fedeltà servono ai fini di una migliore conoscenza del nostro cliente? E se sì, come possono essere intelligentemente utilizzate per una efficace strategia di marketing?

Il vantaggio principale è quello di conoscere esattamente tutti gli acquisti fatti dal singolo cliente, ogni volta che si reca in negozio. Permettono inoltre di conoscere la frequenza di visita, di sapere se il cliente è un alto o basso spendente, se è fedele o infedele, se aderisce ad offerte promozionali, e, nel caso, a quali.

Se poi a questi dati uniamo quelli riguardanti le scelte operate dagli shoppers direttamente a scaffale – osservo e tocco il “prodotto X” ma poi lo rimetto a scaffale e compro “Y” – possiamo ottenere un patrimonio di informazioni ancora più ricco. Possiamo ricostruire l’intero processo di acquisto e valutare così l’efficacia delle attività di trade marketing.

In una ricerca shopper, da noi seguita, abbiamo testato la bontà di una particolare iniziativa promozionale indirizzata ai possessori di carta fedeltà. Innanzitutto una prima osservazione. Gli intestatari delle carte fedeltà risultano essere per il 49% uomini e per il 51% donne. Ma questo dato non corrisponde al profilo dello shopper effettivo rilevato dai sistemi di Videoanalytics di Dialogica che individuano al contrario una prevalenza degli uomini sulle donne. Questo ci insegna che l’intestatario della card non è sempre lo shopper effettivo.

Sulla base dei comportamenti e delle scelte di acquisto rilevati durante i periodi promozionali e soprattutto dei tassi di redemption (quanti shoppers continuano ad acquistare il prodotto anche dopo la fine della promo), individuiamo 4 cluster di clienti:

  1. Shopper fedeli alto consumanti
  2. Shopper fedeli basso consumanti
  3. Shopper occasionali
  4. Shopper della concorrenza

Il tasso di redemption più alto viene registrato chiaramente sul target dei fedeli “heavy users” (29%), ma una certa opportunità viene individuata sul cluster occasionali (14%) e concorrenti (10%). La formula di promo più efficace? Quella più “articolata” (con un cut price più modesto sui clienti già acquisiti) e quindi meno aggressiva. Questa registra alla fine un ROI positivo (+ 6%). Le altre due formule, che appiattiscono gli sconti su un livello alto indifferentemente per tutti i target di clientela, chiudono in negativo.

Quanti nuovi clienti restano fedeli alla marca dopo la promozione? Ovvero, le promo sono uno strumento efficace di sampling e inducono gli shopper ad acquistare nuovamente? Ci ritorneremo in un prossimo post.

 

Quanti shoppers acquistano effettivamente il mio prodotto?

Bella domanda! Non è facile dare una risposta. Nemmeno i dati scanner possono rispondere esaustivamente ad essa… ovvero, noi conosciamo il risultato finale (l’acquisto), ma poco sappiamo dello shopper e di come sia arrivato ad esso.

Possiamo scoprire qualcosa di più dalle carte fedeltà? Sì e no… o meglio dipende: la carta è per uso personale, ma può essere utilizzata in realtà da qualsiasi altro membro della famiglia del proprietario. In un caso di nostra pertinenza, abbiamo comparato i numeri di genere (maschi e femmine) degli shoppers rilevati da una tecnologia di videoanalytics (collocata sugli scaffali) con i numeri riportati dai moduli delle carte fedeltà. Queste ultime tendevano a sovrastimare il target femminile (face detection: 42%; carte fedeltà: 52%).

Bene, a questo punto vi starete chiedendo: che cosa sono i sistemi di videoanalytics? Ricostruiamo brevemente la loro storia: nati agli inizi del 21° secolo per scopi militari e di sicurezza, questi sistemi sono stati adattati ad altri ambiti, in particolare il mondo marketing e comunicazione. Essi consentono difatti di misurare le audience nei luoghi pubblici (siano essi circuiti digital out of home, supermercati, negozi, fiere o eventi), e più in particolare di contare i passaggi, i viewers (coloro che hanno effettivamente osservato uno schermo, uno scaffale, un prodotto…), e di misurare i tempi medi di permanenza (quindi sosta di fronte ad una determinata postazione) e di attenzione. Tutti i dati sono poi segmentabili per genere e fasce di età.

Il match combinato fra questi dati e quelli acquisibili da un retailer (quindi dati scanner e informazioni sul planogramma) consente di ricostruire il “path to purchase”, capire il comportamento del consumatore nel punto di vendita, e quindi verificare l’efficacia dei planogrammi e delle esposizioni ai fini dell’acquisto. Siamo così in grado di rispondere alla domanda posta all’inizio dell’articolo: Quanti shoppers acquistano effettivamente il mio prodotto?

Nella nostra piattaforma, Dianalytics™, realizziamo il match fra queste diverse fonti di dati (carte fedeltà, web analytics, planogrammi, advertising…), riuscendo quindi a “catturare” lo shopper dal suo ingresso nel punto di vendita fino allo scaffale. Quello che noi misuriamo é:

  1. Store traffic: persone che entrano nel punto di vendita
  2. Aisle traffic: persone che arrivano in corsia
  3. Shelf traffic: persone che arrivano di fronte alla categoria
  4. Potential shoppers: persone di fronte allo scaffale e che osservano la categoria
  5. Actual shoppers: persone che hanno effettivamente acquistato uno o più prodotti

In un caso riguardante un brand con un’alta awareness, da noi monitorato per un periodo di 6 mesi in un panel di iper in Italia, abbiamo raccolto questi dati: più di 470.000 shoppers sono entrati nello store; 37.931 persone, ovvero il 7,4% di essi, ha osservato il brand in questione, e “solo” 794 hanno proceduto al suo acquisto, ovvero l’1,4% degli shoppers potenziali. Se si riuscisse ad alzare la sale conversion all’ 1,7%, avremmo un incremento del sellout del 13%.

Ecco che la nostra domanda diventa: come convertire gli shoppers potenziali in attuali?

Leggete i prossimi post per scoprire la risposta 😉